TRPC4α and TRPC4β Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation
نویسندگان
چکیده
The Transient Receptor Potential Channel Subunit 4 (TRPC4) has been considered as a crucial Ca2+ component in cardiomyocytes promoting structural and functional remodeling in the course of pathological cardiac hypertrophy. TRPC4 assembles as homo or hetero-tetramer in the plasma membrane, allowing a non-selective Na+ and Ca2+ influx. Gαq protein-coupled receptor (GPCR) stimulation is known to increase TRPC4 channel activity and a TRPC4-mediated Ca2+ influx which has been regarded as ideal Ca2+ source for calcineurin and subsequent nuclear factor of activated T-cells (NFAT) activation. Functional properties of TRPC4 are also based on the expression of the TRPC4 splice variants TRPC4α and TRPC4β. Aim of the present study was to analyze cytosolic Ca2+ signals, signaling, hypertrophy and vitality of cardiomyocytes in dependence on the expression level of either TRPC4α or TRPC4β. The analysis of Ca2+ transients in neonatal rat cardiomyocytes (NRCs) showed that TRPC4α and TRPC4β affected Ca2+ cycling in beating cardiomyocytes with both splice variants inducing an elevation of the Ca2+ transient amplitude at baseline and TRPC4β increasing the Ca2+ peak during angiotensin II (Ang II) stimulation. NRCs infected with TRPC4β (Ad-C4β) also responded with a sustained Ca2+ influx when treated with Ang II under non-pacing conditions. Consistent with the Ca2+ data, NRCs infected with TRPC4α (Ad-C4α) showed an elevated calcineurin/NFAT activity and a baseline hypertrophic phenotype but did not further develop hypertrophy during chronic Ang II/phenylephrine stimulation. Down-regulation of endogenous TRPC4α reversed these effects, resulting in less hypertrophy of NRCs at baseline but a markedly increased hypertrophic enlargement after chronic agonist stimulation. Ad-C4β NRCs did not exhibit baseline calcineurin/NFAT activity or hypertrophy but responded with an increased calcineurin/NFAT activity after GPCR stimulation. However, this effect was not translated into an increased propensity towards hypertrophy but rather less hypertrophy during GPCR stimulation. Further analyses revealed that, although hypertrophy was preserved in Ad-C4α NRCs and even attenuated in Ad-C4β NRCs, cardiomyocytes had an increased apoptosis rate and thus were less viable after chronic GPCR stimulation. These findings suggest that TRPC4α and TRPC4β differentially affect Ca2+ signals, calcineurin/NFAT signaling and hypertrophy but similarly impair cardiomyocyte viability during GPCR stimulation.
منابع مشابه
The phosphatidylinositol(4,5)bisphosphate-binding sequence of transient receptor potential channel canonical 4α is critical for its contribution to cardiomyocyte hypertrophy.
Cardiomyocyte hypertrophy requires a source of Ca(2+) distinct from the Ca(2+) that regulates contraction. The canonical transient receptor potential channel (TrpC) family, a family of cation channels regulated by activation of phospholipase C (PLC), has been implicated in this response. Cardiomyocyte hypertrophy downstream of Gq-coupled receptors is mediated specifically by PLCβ1b that is scaf...
متن کاملElectrical stimulation of primary neonatal rat ventricular cardiomyocytes using pacemakers.
The study of gene regulation in cardiac myocytes requires a reliable in vitro model. However, monolayer cultures used for this purpose are typically not exposed to electrical stimulation, though this has been shown to strongly affect cardiomyocyte gene expression. Based on pacemakers for clinical use, we developed an easy-to-use portable system that allows the user to perform electro-stimulatio...
متن کاملThe eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes.
The protective effect of Regulator of G protein Signaling 2 (RGS2) in cardiac hypertrophy is thought to occur through its ability to inhibit the chronic GPCR signaling that promotes pathogenic growth both in vivo and in cultured cardiomyocytes. However, RGS2 is known to have additional functions beyond its activity as a GTPase accelerating protein, such as the ability to bind to eukaryotic init...
متن کاملEzh2 is not required for cardiac regeneration in neonatal mice
The neonatal mouse heart has the remarkable capacity to regenerate lost myocardium within the first week of life. Neonatal cardiomyocytes re-express fetal genes that control cell proliferation after injury to promote regeneration. The loss of regenerative capacity of the heart one week after birth coincides with repression of a fetal transcriptional program coordinated by epigenetic regulators....
متن کاملIdentification of IEX-1 as a biomechanically controlled nuclear factor-kappaB target gene that inhibits cardiomyocyte hypertrophy.
Biomechanical strain is a stimulus for cardiomyocyte hypertrophy and heart failure, but the underlying molecular mechanisms remain incompletely understood. Using an in vivo murine model of pressure overload and an in vitro model of mechanical stimulation of primary cardiomyocytes, we identified iex-1 as a gene activated during the early response of cardiomyocytes to hypertrophic stimuli and as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016